Lecture 10 Standard Forms

SOP AND POS

- Boolean expressions can be manipulated into many forms.
- Some standardized forms are required for Boolean expressions to simplify communication of the expressions.
 - Sum-of-products (SOP)
 - Example:

$$F(A, B, C, D) = AB + \overline{B}C\overline{D} + AD$$

- Products-of-sums (POS)
 - Example:

$$F(A, B, C, D) = (A + B)(\overline{B} + C + \overline{D})(A + D)$$

Minterms and Maxterms

Minterms and Maxterms

> MINTERMS AND MAXTERMS:

n binary variables can be combined to form 2^n terms (AND terms), called *minterms* or standard products.

In a similar fashion, n binary variables can be combined to form 2^n terms (OR terms), called *maxterms* or standard sums.

* Note that each maxterm is the complement of its corresponding minterm and vice versa.

Minterms and Maxterms (continued)

Minterms and Maxterms for Three Binary Variables

x y z		Minterms		Maxterms
0 0 0	x'y'z'	$m_{\rm o}$	X+Y+Z	$M_{\rm o}$
0 0 1	X'Y'Z	m_1	<i>X+Y+Z′</i>	M_1
0 1 0	x'yz'	m_2	<i>X+Y'+Z</i>	M_2
0 1 1	x'yz	m_3	<i>X+Y'+Z'</i>	M_3
1 0 0	xy′z′	m_4	<i>X'+Y+Z</i>	M_4
1 0 1	xy′z	m_5	<i>X'+Y+Z'</i>	M_5
1 1 0	XYZ'	m_6	X'+Y'+Z	M_6
1 1 1	XYZ	m_7	<i>X'+y'+Z'</i>	M_7

MINTERMS

The following table gives the minterms for a three-input system

			m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7
Α	В	С	ABC	ĀBC	ĀBĒ	ĀВС	ABC	ABC	ABC	ABC
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

SUM OF MINTERMS

- Sum-of-minterms standard form expresses the Boolean or switching expression in the form of a sum of products using minterms.
 - For instance, the following Boolean expression using minterms

$$F(A, B, C) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + A\overline{B}\overline{C} + A\overline{B}C$$

could instead be expressed as

$$F(A, B, C) = m_0 + m_1 + m_4 + m_5$$

or more compactly

$$F(A, B, C) = \sum m(0, 1, 4, 5) = one-set(0, 1, 4, 5)$$

MAXTERMS

The following table gives the maxterms for a three-input system

			$M_{\rm C}$	M_{1}	M_2	M_{ζ}	M_4	ι M _ε	$_{5}$ M_{6}	M_7
			A + B	+ C	$\boldsymbol{A}+\overline{\boldsymbol{B}}$	+ C	$\overline{\mathbf{A}} + \mathbf{B}$	+ C	$\overline{\mathbf{A}} + \overline{\mathbf{B}}$	+ C
Α	В	С		$\mathbf{A} + \mathbf{B}$	+ C	$A + \overline{B}$	+ C	$\overline{\mathbf{A}} + \mathbf{B}$	+ C	$\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}$
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

PRODUCT OF MAXTERMS

- Product-of-maxterms standard form expresses the Boolean or switching expression in the form of product of sums using maxterms.
 - For instance, the following Boolean expression using maxterms

$$F(A, B, C) = (A + B + \overline{C})(\overline{A} + B + C)(\overline{A} + \overline{B} + \overline{C})$$

could instead be expressed as

$$\mathbf{F}(\mathbf{A},\mathbf{B},\mathbf{C}) = M_1 \cdot M_4 \cdot M_7$$

or more compactly as

$$F(A, B, C) = \prod M(1, 4, 7) = zero-set(1, 4, 7)$$

STANDARD FORMS MINTERM AND MAXTERM EXP.

Given an arbitrary Boolean function, such as

$$F(A, B, C) = AB + \overline{B}(\overline{A} + \overline{C})$$

how do we form the canonical form for:

- sum-of-minterms
 - Expand the Boolean function into a sum of products. Then take each term with a missing variable X and AND it with X + X.
- product-of-maxterms
 - Expand the Boolean function into a product of sums. Then take each factor with a missing variable X and OR it with XX.

FORMING SUM OF MINTERMS

Example

$$F(A, B, C) = AB + \overline{B}(\overline{A} + \overline{C}) = AB + \overline{AB} + \overline{BC}$$

$$= AB(C + \overline{C}) + \overline{AB}(C + \overline{C}) + (A + \overline{A})\overline{BC}$$

$$= \overline{ABC} + \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$

$$= \sum m(0, 1, 4, 6, 7)$$

ABCF	
0 0 0 1	0
0 0 1 1 -	1
0 1 0 0	
0 1 1 0	
1 0 0 1 -	4
1 0 1 0	
1 1 0 1 ◀	6
1 1 1 1 1 ←	7

Minterms listed as 1s in Truth Table

FORMING PROD OF MAXTERMS

Example

$$F(A, B, C) = AB + \overline{B}(\overline{A} + \overline{C}) = AB + \overline{AB} + \overline{BC}$$

$$= (A + \overline{B})(A + \overline{B} + \overline{C})(\overline{A} + B + \overline{C}) \qquad \text{(using distributivity)}$$

$$= (A + \overline{B} + C\overline{C})(A + \overline{B} + \overline{C})(\overline{A} + B + \overline{C})$$

$$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + B + \overline{C})$$

$$= \prod_{A \in A} M(2, 3, 5)$$

	Α	В	С	F
•	0	0	0	1
	0	0	1	1
	0	1	0	0 ← 2
	0	1	1	0 ← 3
	1	0	0	1
	1	0	1	0 ← 5
	1	1	0	1
	1	1	1	1

Maxterms listed as 0s in Truth Table

CONVERTING MIN AND MAX

- Converting between sum-of-minterms and product-of-maxterms
 - The two are complementary, as seen by the truth tables.
 - To convert interchange the \sum and \prod , then use missing terms.
 - Example: The example from the previous slides

$$F(A, B, C) = \sum m(0, 1, 4, 6, 7)$$

is re-expressed as

$$F(A, B, C) = \prod M(2, 3, 5)$$

where the numbers 2, 3, and 5 were missing from the minterm representation.

Sminterms and P maxterms

■ Given the truth table, express F_1 in sum of minterms

X	У	Ζ	F_1	F_2
0	0	0	0	1
0	0	1	1	0
0	1	0	<u> </u>	1
0	1	1	0	1
1	0	0		0
1	0	1	1	0
1	1	0	1 1	0
1	1	1	1	0

$$F_1(x, y, z) = \sum (1,4,5,6,7) = m_1 + m_4 + m_5 + m_6 + m_7$$
$$= (x'y'z) + (xy'z') + (xy'z') + (xyz') + (xyz') + (xyz')$$

■ Find F_2

Sminterms and P maxterms

■ Repeat for product of maxterms.

X	У	Ζ	F_1	F_2
0	0	0	0	1
0	0	1		0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$F_1(x, y, z) = \prod (0,2,3) = M_0 \cdot M_2 \cdot M_3$$
$$= (x + y + z)(x + y' + z)(x + y' + z')$$

Sminterms and P maxterms

Express the Boolean function F = x + y'z in a sum of minterms, and then in a product of Maxterms.

$$x = x(y + y') = xy + xy'$$

 $xy = xy(z + z') = xyz + xyz'$
 $xy' = xy'(z + z') = xy'z + xy'z'$
 $y'z = y'z(x + x') = xy'z + x'y'z$

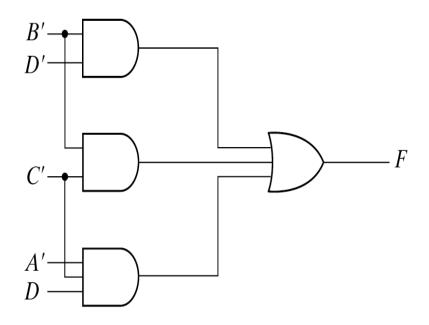
Adding all terms and excluding recurring terms:

$$F(x, y, z) = x'y'z + xy'z' + xyz' + xyz' + xyz'$$
 (SOP)
 $F(x, y, z) = m_1 + m_4 + m_5 + m_6 + m_7 = \sum (1,4,5,6,7)$

Product of maxterms (POS)?

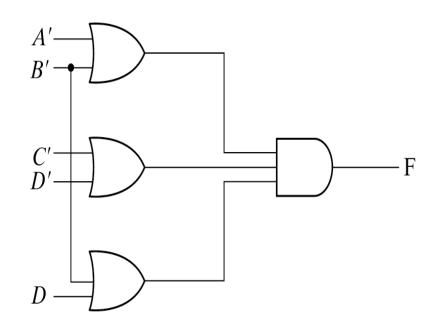
SOP and POS gate implementation

SUM OF PRODUCT (SOP)



(a)
$$F = B'D' + B'C' + A'C'D$$

PRODUCT OF SUM (POS)



(b)
$$F = (A' + B') (C' + D') (B' + D)$$

Fig. 3-15 Gate Implementation of the Function of Example 3-8

Assignment 10

 Convert the following to SOP and POS Form as a function of ABC :

F(A,B,C) = 110, 111, 101, 001